
Science of the Total Environment 923 (2024) 171403

Available online 1 March 2024
0048-9697/© 2024 Elsevier B.V. All rights reserved.

Exploring the ecological meanings of temperature sensitivity of ecosystem 
respiration from different methods 

Yang Zhang a, Gaofeng Zhu a,*, Kun Zhang b,*, Heng Huang c, Liyang He a, Cong Xu a, 
Huiling Chen d, Yonghong Su e, Yuzhong Zhang a, Haochen Fan a, Boyuan Wang a 

a College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China 
b School of Biological Sciences and Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong SAR, China 
c School of Ecology, Sun Yat-sen University, Shen Zhen 518107, China 
d College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China 
e Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China   
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• Underpinnings and ecological meanings 
of Q10 estimation methods are 
scrutinized. 

• Apparent Q10 estimated by long-term 
method varies across different biomes. 

• Short-term and high-frequency signals 
methods all remove the confounding 
effect. 

• Intrinsic Q10 which has removed the 
confounding effect is convergent.  
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A B S T R A C T   

Temperature sensitivity (Q10) of ecosystem respiration (Re) is a critical parameter for predicting global terrestrial 
carbon dynamics and its response to climate warming. However, the determination of Q10 has been controversial. 
In this study, we scrutinized the underpinnings of three mainstream methods to reveal their relationships in 
estimating Q10 for Re in the Heihe River Basin, northwest China. Specifically, these methods are Q10 estimated 
from the long-term method (Q10_long), short-term method (Q10_short), and the low-frequency (Q10_lf) and high- 
frequency (Q10_hf) signals decomposed by the singular spectrum analysis (SSA) method. We found that: 1) 
Q10_lf and Q10_long are affected by the confounding effects caused by non-temperature factors, and are 1.8 ± 0.3 
and 1.7 ± 0.3, respectively. 2) The high-frequency signals of the SSA method and short-term method have 
consistent roles in removing the confounding effects. Both Q10_short and Q10_hf reflect the actual response of 
respiration to temperature. 3) Overall, Q10_long has a larger variability (1.7 ± 0.3) across different biomes, 
whereas Q10_short and Q10_hf show convergence (1.4 ± 0.2 and 1.3 ± 0.1, respectively). These results highlight the 
fact that Q10 can be overestimated by the long-term method, whereas the short-term method and high-frequency 
signals decomposed by the SSA method can obtain closer and convergent values after removing the confounding 
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effects driven by non-temperature factors. Therefore, it is recommended to use the Q10 value estimated by the 
short-term method or high-frequency signals decomposed by the SSA method to predict carbon dynamics and its 
response to global warming in Earth system models.   

1. Introduction 

Temperature sensitivity (Q10) of ecosystem respiration (Re), which is 
defined as a quotient of the change in respiration with a 10 ◦C increase in 
temperature, is a critical parameter when determining global terrestrial 
carbon dynamics and its response to climate warming (Karhu et al., 
2014; Matteucci et al., 2015; Crowther et al., 2016; Melillo et al., 2017; 
Niu et al., 2021). Differences in the estimated Q10 values can lead to 
great uncertainties in predicting carbon loss and the intensity of cli-
mate‑carbon cycle feedback in Earth system models (ESMs) (Johnston 
et al., 2021; García et al., 2023; Jia et al., 2023). Over the past decades, 
diverse methods have been proposed to estimate the value of Q10 for Re 
(Lloyd and Taylor, 1994; Wen et al., 2006; Zhou et al., 2009; Zhang 
et al., 2022). However, there is still much debate over the estimated Q10 
values of the different methods (von Lützow and Kögel-Knabner, 2009; 
Yvon-Durocher et al., 2012; Ding et al., 2016; Wu et al., 2021a). In 
addition, the relationships between the different methods remain un-
clear. Therefore, there is a need to compare the different methods, to 
understand the ecological meanings of Q10 estimated by the different 
methods. 

Traditionally, Q10 values were directly estimated by fitting the 
exponential function using observed respiration and temperature data 
((Randerson et al., 2009; Graf et al., 2011; Huang and Wang, 2022). 
Some researchers used year-round observations of respiration and 
temperature to estimate the Q10 value (hereafter named the long-term 
method), which is an approach that can be affected by other factors (i. 
e., soil moisture, substrate availability, and vegetation activity) (Bhu-
pinderpal-Singh et al., 2003; Tang et al., 2005; Matteucci et al., 2015; 
Zhang et al., 2022). Thus, the Q10 value estimated by this method is 
called the “apparent Q10” (Davidson et al., 2006). To overcome the 
shortcomings of this method, Reichstein et al. (2005) proposed to use 
observations over a successive 15-day period to estimate the Q10 value 
(hereafter named the short-term method), which is considered to 
represent the actual response of respiration to temperature (Vicca et al., 
2009; Curiel Yuste et al., 2010; Wutzler et al., 2018). Overall, the 
ecological meanings of Q10 estimated by short-term and long-term 
methods are clear and easy to understand. Recently, some researchers 
have proposed to estimate Q10 by the use of a signal decomposition 
technique, such as singular spectrum analysis (SSA) or empirical mode 
decomposition (EMD), which decompose the original time series into 
low-frequency and high-frequency signals (Mahecha et al., 2010; Wang 
et al., 2010b; Liu et al., 2020; Wu et al., 2023). It is assumed that the 
confounding effects caused by non-temperature factors exist only in the 
low-frequency signals, and Q10 estimated by the high-frequency signals 
can represent the actual response of Re to temperature (Wang et al., 
2018; Liu et al., 2020). Thus, the Q10 value estimated using the high- 
frequency signals is called the “intrinsic Q10” (Mahecha et al., 2010). 

Despite these advances in Q10 estimation methods, some obscure 
problems still exist in the present studies. Firstly, as a signal decompo-
sition method, SSA can decompose the time series into signals with 
different frequencies (Wang et al., 2018; Liu et al., 2020). As far as the Re 
time series is concerned, the ecological meanings of signals with 
different frequencies decomposed by SSA are not well characterized. 
Therefore, there is a need to investigate the relationships between the 
estimated Q10 values of the traditional methods and the SSA method. 
This will help us to understand the ecological meaning of Q10 estimated 
by the SSA method. Secondly, many studies using traditional methods 
based on year-round observations have shown that the Q10 values vary 
widely at different sites (Wen et al., 2006; Zhou et al., 2009; Yang et al., 
2021). The corresponding 95 % confidence ranges of the Q10 values 

range from 2.0 to 2.6 across 60 FLUXNET sites (Mahecha et al., 2010). 
However, Mahecha et al. (2010) using the high-frequency signals 
decomposed by the SSA method showed that the value of Q10 tends to be 
convergent (1.4 ± 0.1) across different biomes. Wu et al. (2021a) also 
diagnosed the convergent Q10 across different biomes in north high- 
latitude regions based on this method. The causes of this divergence of 
Q10 values are not well understood from the standpoint of ecology. Thus, 
there is an urgent need to compare the Q10 values estimated by different 
methods over diverse biomes, and to verify the convergence of Q10 
across different biomes. 

To solve these issues, we collected data from 15 eddy covariance flux 
sites with large climate gradients and various landscape types in the 
Heihe River Basin, northwest China, and estimated their Q10 for Re using 
the different methods. We assumed that the Q10 value estimated from 
the high-frequency signals decomposed by SSA should be closer to that 
of the short-term method since both these methods aim to remove the 
confounding effects driven by non-temperature factors. The specific 
objectives of this study were: 1) to scrutinize the underpinnings of the 
three different methods for estimating Q10 for Re; 2) to reveal the dif-
ferences in the Q10 values estimated by the different methods; and 3) to 
explore the convergence of Q10 across different biomes. 

2. Materials and methods 

2.1. Study area 

The Heihe River Basin (37◦41′N–42◦42′N, 96◦42′E–102◦00′N) is the 
second-largest inland river basin in China, with a total area of approx-
imately 1.432 × 105 km2 (Li et al., 2013; Wang et al., 2022) (Fig. 1). The 
Heihe River originates in the Qilian Mountains and finally disappears in 
Juyanhai Lake (Li et al., 2018). This basin has distinct cold and arid 
landscapes from the upper to lower reaches (Liu et al., 2011; Xu et al., 
2013; Wang et al., 2019). In the upstream area, typical landscapes for a 
cold region are found, such as glaciers, alpine grassland, and alpine 
meadow; the middle reaches are dominated by artificial oasis-riparian 
zone-wetland-desert compound ecosystems; and the downstream area 
is dominated by natural oasis and desert (Liu et al., 2018; Wang et al., 
2019). Therefore, this basin is an ideal experimental platform for carbon 
flux research, which also has established integrated observatory net-
works (Li et al., 2013; Li et al., 2017; Liu et al., 2018). 

2.2. Data collection and pre-processing 

In this basin, 15 sites from the integrated observatory networks were 
selected for this study, which provided multi-year continuous observa-
tions for the eddy covariance fluxes and meteorological elements. The 
site distribution is shown in Fig. 1 and the detailed information is pro-
vided in Table S1. These sites consist of various landscapes, mainly 
including alpine grassland, alpine meadow, maize, phragmites australis, 
desert steppe, cantaloupe, etc. (Table S1). These sites involve the major 
ecosystem types for the inland basin, including four grassland sites, 
three forests sites, one wetland site, two cropland sites, and five desert 
sites. 

A detailed description of the sensors of the eddy covariance system 
and the automatic weather station for each site can be found in Liu et al. 
(2018) and Wang et al. (2019). The eddy covariance data pre-processed 
by EddyPro software and the meteorological data were obtained from 
the National Tibetan Plateau Data Center (TPDC) (http://data.tpdc.ac. 
cn/). In addition, soil organic carbon (SOC) content at 0–5 cm at a 
spatial resolution of 100 m for each site was extracted from the digital 
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soil mapping dataset of SOC content for the Heihe River Basin, which 
was also downloaded from the TPDC (Yang et al., 2016). Soil texture 
data were derived from the World Soil Database (HWSD) (https://www. 
fao.org/soils-portal/en/), which mainly includes the sand, silt, and clay 
content (Wang et al., 2009; Yu et al., 2023). The SOC content is rich in 
the sites of the upstream area, ranging from 48.1 to 58.5 g kg− 1. In 
contrast, the sites of middle and downstream areas have less SOC con-
tent, and SOC content varies from 1.7 to 9.7 g kg− 1 (Table S1). 

In this study, the gaps in the net CO2 fluxes were filled and the net 
CO2 fluxes were then partitioned into gross primary productivity (GPP) 
and ecosystem respiration (Re) by the use of the REddyProc package 
(Wutzler et al., 2018). The proportion of valid net CO2 fluxes and the 
number of available years at the 15 sites are provided in Table S2. Only 
when the proportion of valid values is >70 % can Q10 be estimated in 
that year. As for the Nongtian (NTZ) site, we reduced this proportion 
limit to 65 % since its observations only cover two years. 

2.3. Temperature sensitivity (Q10) for ecosystem respiration 

The temperature sensitivity (Q10) for ecosystem respiration is esti-
mated according to the exponential function between ecosystem respi-
ration and air temperature (Mahecha et al., 2010): 

Re = RrefQ10
Ta-Tref

γ (1)  

where Re is the mean value of the nighttime ecosystem respiration 
(μmol m− 2 s− 1); Ta is the mean value of the nighttime air temperature 
(◦C); γ is the change in air temperature, which is set to 10 ◦C; Tref is the 
reference temperature (15 ◦C); and Rref is the basic respiration at the 
reference temperature (μmol m− 2 s− 1). The above equation (Eq. (1)) can 
be linearized by taking the logarithm of two sides as follows: 

ρ = ρref + τlnQ10 (2)  

where ρ = lnRe, ρref = lnRref , andτ = Ta − Tref
γ . The ordinary least squares 

linear regression method is then used to estimate the values of Q10 and 
Rref. 

Specifically, in this study, we used year-round observations of 
respiration and temperature to fit Eq. (2) and obtain the apparent Q10 
values (hereafter named Q10_long). According to Reichstein et al. (2005), 
we used a 15-day moving window with a step size of 5 days to divide the 
whole year’s respiration and temperature data into different periods. 
This window length was short enough to avoid the effects of other fac-
tors and long enough to provide adequate data for the regression 
(Reichstein et al., 2005). Instead of using the original respiration and 
temperature data in each window, the Q10 values were estimated based 
on the anomalies of respiration and temperature in each 15-day window. 
The newly generated anomaly series of respiration and temperature in 
each 15-day window can keep the slope (lnQ10) of the linear regression 
unchanged and help in the comparison with the SSA method. As for each 
period, the regression parameters and statistics are evaluated after re-
gressions according to the methods described in Reichstein et al. (2005). 
Only those periods where the relative standard error of the estimates of 
the parameter Q10 is <50 % and where estimates are within an accepted 
range (0–5) are accepted. These Q10 values are thought to constitute the 
best estimate of the short-term temperature sensitivity of ecosystem 
respiration, and their mean values are used to estimate the Q10 repre-
sentative for the whole year (hereafter named Q10_short). In this study, 
the 15-day moving window was also validated in different site-years, 
due to the similarity of the results, we took a single site (Arou site, 
ARZ) in 2021 as an example to show the variation of Q10_short with the 
increases of window size. 

In addition, we used the SSA method to decompose the observed Re 
and Ta time series into signals with different frequencies, and estimated 
the Q10 values from the low-frequency (hereafter named Q10_lf) and 
high-frequency (hereafter named Q10_hf) signals, respectively. The SSA 

Fig. 1. Locations of the 15 eddy covariance flux and meteorological element observation sites in the Heihe River Basin, northwest China. ARZ, DSL, YKZ, JYL, HYL, 
HHL, SDQ, SDZ, DMZ, NTZ, HZZ, BJT, SSW, HMZ, and LDZ represent the Arou, Dashalong, Yakou, Jingyangling, Huyanglin, Hunhelin, Sidaoqiao, Shidi, Daman, 
Nongtian, Huazhaizi, Bajitan, Shenshawo, Huangmo, and Luodi sites, respectively. 
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can decompose the observed time series into the sum of interpretable 
components with no a priori information about the time series structure 
(Golyandina and Korobeynikov, 2014). As for a time series XN = (x1, …, 
xN) of length N, let window length L be some integer (1 < L < N) and 
K=N–L + 1 (Golyandina et al., 2015). The basic processes of the SSA 
include: 1) mapping the original time series into a sequence of lagged 

vectors of size L by forming K=N–L + 1 lagged vectors, and generating 
the trajectory matrix; 2) determining the eigenvalues and eigenvectors 
of covariance matrix; 3) calculating the principal components; 4) 
calculating the reconstructed components of low-frequency and high- 
frequency signals. In this method, we determine the optimal window 
length according to the seasonal variation of original time series. 

Fig. 2. Schematic diagram of the different ln(Re) time series and their relationships after being treated with the long-term, short-term, and SSA methods in 2021 in 
Arou site. (a) show the original ln(Re). (b) and (c) show the decomposed low-frequency signal and a high-frequency signal based on the SSA method, respectively. (d) 
and (e) show the mean ln(Re) and ln(Re) anomalies in each 15-day window based on the short-term method. (f) show the relationship between the original ln(Re) and 
the low-frequency signal of ln(Re). (g) show the relationship between the ln(Re) anomaly in each window and the high-frequency band of ln(Re). 
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Specifically, the window length is determined when the reconstructed 
component of the low-frequency signal from first eigenvalue can best 
describe the variation trend of time series. Meanwhile, other high- 
frequency sub-signals are reconstructed as the high-frequency signals. 
The SSA was performed in MATLAB R2017b (MathWorks Inc., Natick, 
Ma), and its code can be obtained from the website (https://dept.atmos. 
ucla.edu/tcd/ssa-tutorial-matlab). 

2.4. Statistical analysis 

The underpinnings of the above three mainstream methods in esti-
mating Q10 for Re (long-term, short-term, and SSA methods) were 
scrutinized. Annual Re and Ta time series determined by the three 
methods performed similar seasonal variation in different site-years. 
Thus, we took a single site (Arou site, ARZ) as an example to explore 
their underpinnings. Finally, based on these methods, Q10_long, Q10_lf, 
Q10_short, and Q10_hf were estimated for different site-years. As for the 
magnitude of the confounding effects driven by non-temperature fac-
tors, we calculated it as follows: 

The confounding effect = Q10 long − Q10 short or  
The confounding effect = Q10 long − Q10 hf . 

An analysis of variance (ANOVA) of the Q10_long, Q10_lf, Q10_short, and 
Q10_hf across different biomes was also conducted using the Duncan 
multiple range test in SPSS 25.0 (SPSS Inc., Chicago, USA). The corre-
lation analysis between the Q10_long and Q10_lf, and between Q10_short and 
Q10_hf was conducted in SPSS 25.0 (SPSS Inc., Chicago, USA). All sta-
tistical significance level was defined as P < 0.05. 

3. Results 

3.1. Relationships between the different methods 

Taking a single site (Arou site, ARZ) as an example, the different 
respiration time series (ρ = lnRe) for 2021 and their relationships after 
being treated with long-term, short-term, and SSA methods are shown in 
Fig. 2. The original ln(Re) in 2021 is decomposed into a low-frequency 
signal and a high-frequency signal based on the SSA method 
(Fig. 2a–c). In addition, the mean ln(Re) and ln(Re) anomalies in each 
15-day window based on the short-term method are shown in Fig. 2d–e. 
Interestingly, it can be found that the low-frequency signal of ln(Re) can 
better reflect the seasonal trend of the original ln(Re), which first 
increased from January to July and then decreased from July to 
December. In contrast, the high-frequency signal of ln(Re) is similar to 
the ln(Re) anomaly in each 15-day window, and both show some oscil-
lation over the short term. The relationship between the original ln(Re) 
and the low-frequency signal of ln(Re) can be described by a linear 
equation (slope = 0.77, R2 = 0.84) (Fig. 2f). Meanwhile, the relationship 
between the ln(Re) anomaly in each window and the high-frequency 
band of ln(Re) can be described by a better linear equation (slope =
0.96, R2 = 0.84) (Fig. 2g). As for the different air temperature time series 
(τ = Ta − 15

10 ) for 2021 and their relationships after being treated with the 
three methods, the characteristics and relationships are similar to the 
different respiration time series (ρ = lnRe) (Fig. S1). 

In addition, we further explored the multi-year variation and re-
lationships of the different respiration/air temperature time series from 
2013 to 2021 for the Arou site, and consistent conclusions were ob-
tained, as shown in Figs. S2–S4. Overall, the high-frequency signal of 
SSA and the time series treated by the short-term method have a 
consistent role in removing the confounding effects caused by the non- 
temperature factors. SSA can directly decompose the time series into 
different frequencies, whereas the short-term method requires a step-
wise sliding approach to obtain the Q10 value in each window. 

3.2. The Q10 values estimated by the different methods for a single site 

The relationships between the Q10 values estimated by the different 
methods over multi-year scales for the Arou site are shown in Fig. 3. 
Each point refers to the Q10 for each year from 2013 to 2021. The results 
show that Q10_long is close to Q10_lf (slope = 1.34, R2 = 0.89), whereas 
Q10_short and Q10_hf are broadly consistent (slope = 0.86, R2 = 0.80). In 
addition, Q10_long and Q10_lf vary over a large range (2.2–3.8), and are 
affected by the confounding effect driven by non-temperature factors. 
Whereas Q10_short and Q10_hf are relatively convergent and vary over a 
small range (1.1–1.9) after removing the confounding effect. Notably, 
Q10_short and Q10_hf are still higher in 2020 (1.7 and 1.9, respectively) and 
2021 (1.7 and 1.8, respectively). This is affected by significant 
increasing precipitation in 2020 and 2021 (with precipitation of 
743.2–818.7 mm) compared with other years (with precipitation of 
392.5–662.1 mm) and thus the original respiration and temperature 
fluctuated large compared with other years. 

3.3. The Q10 values estimated by the different methods across different 
biomes 

The magnitudes and relationships of the Q10 values estimated by the 
different methods across biomes are shown in Fig. 4 and Table S3. 
Different points for each biome indicate different site-years. As for the 
different biomes, it can be found that Q10_long is close to Q10_lf and they 
have a good linear relationship (slope = 1.06, R2 = 0.88). In contrast, 
Q10_short and Q10_hf are broadly consistent and there is also a better linear 
relationship between them (slope = 0.73, R2 = 0.72). 

In addition, the relationship between Q10_long and Q10_short (or Q10_hf) 
in the Heihe River Basin is shown in Fig. 5a. Q10_long exhibits a consid-
erable degree of variation, with a range spanning from 1.0 to 3.1 and a 
mean value of 1.7 ± 0.3. Notably, Q10_long fluctuates more widely in the 
grassland biome than in the other biomes. In contrast, Q10_short and Q10_hf 
based on the short-term and SSA methods are approximately stable in 
the range of 0.6–2.1 and 0.6–2.0, respectively. Their mean values are 1.4 
± 0.2 and 1.3 ± 0.1, respectively, and they reflect the actual response of 
respiration to temperature. As for the magnitude of the confounding 
effects driven by non-temperature factors, there are large differences 
across the different biomes (Fig. 5b). Among the different biomes, the 
grassland ecosystem has the highest confounding effect, with a 
maximum of 1.0 ± 0.4. Overall, the confounding effect leads to an 
overestimation of Q10 by 0.3 ± 0.3 and 0.5 ± 0.3, respectively, 
compared with Q10_short and Q10_hf in the Heihe River Basin. 

4. Discussion 

4.1. The ecological meaning of Q10 estimated by the SSA method 

Although early studies used high-frequency signals to estimate the 
response of respiration to temperature, the ecological meanings of Q10 
estimated by signals with different frequencies remain unclear and 
difficult to understand (Wang et al., 2010b; Wang et al., 2018). Inter-
estingly, we found that the high-frequency signals of the SSA method 
and the time series treated by the short-term method have similar 
variation characteristics (Fig. 2a–e). This results in consistent ecological 
meanings for Q10_hf and Q10_short, i.e., both reflect the actual response of 
respiration to temperature after removing the confounding effects 
caused by the non-temperature factors (Reichstein et al., 2005; Mahecha 
et al., 2010). In addition, the low-frequency signal of the SSA method 
can better reflect the seasonal trend of the original time series, and its 
estimated Q10 value contains the confounding effects caused by the non- 
temperature factors (Zhou et al., 2009; Mahecha et al., 2010). Therefore, 
Q10_lf and Q10_long are broadly consistent and contain large differences in 
variation. Overall, this research creatively explains the ecological 
meanings of Q10 estimated by the low-frequency and high-frequency 
signals. 
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Recently, the convergence of Q10 across different biomes has been 
subject to much debate (Mahecha et al., 2010; Perkins et al., 2012; 
Gudasz et al., 2021). We found that Q10_short estimated by the short-term 
method and Q10_hf estimated by the high-frequency signal of the SSA 
method show convergence (1.4 ± 0.2 and 1.3 ± 0.1, respectively) across 
the different biomes, and are close to the global average values (1.4 ±
0.1) reported by Mahecha et al. (2010). In contrast, Q10_long estimated by 
the long-term method shows larger variability (1.7 ± 0.3) across the 

different biomes. This suggests that the confounding effects caused by 
the non-temperature factors can result in different estimation values for 
Q10 and can lead to great uncertainty in predicting the temperature 
response of carbon decomposition (Chen and Tian, 2005; Davidson 
et al., 2006; Zhou et al., 2009; Wang et al., 2010a). 

From a processing perspective, the signal decomposition technique is 
completely different from the short-term method. The short-term 
method requires a stepwise sliding approach to estimate Q10 in each 

Fig. 3. The relationships between (a) the temperature sensitivity estimated by the long-term method (Q10_long) and low-frequency signal (Q10_lf), and (b) the tem-
perature sensitivity estimated by the short-term method (Q10_short) and high-frequency signal (Q10_hf) over multi-year scales. Each point refers to the Q10 for each year 
from 2013 to 2021. 

Fig. 4. The magnitudes (a and c) and relationships (b and d) of the Q10 values estimated by the long-term, short-term, and SSA methods across biomes. The white 
circles in the boxes indicate the mean values, and the lines across the middle of the boxes indicate the median values. The lower and upper ends of the boxes are the 
25th and 75th percentiles. GRA, FOR, WET, CRO, and DES represent the grassland, forest, wetland, cropland, and desert ecosystems, respectively. Different points for 
each biome indicate different site-years. The different letters above the bars represent the significant difference at P < 0.05. 
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window, with which it is easy to understand the ecological meaning of 
Q10 (Reichstein et al., 2005). However, this method is susceptible to the 
outliers within each window, with widely varying Q10 estimates from 
different windows. As for the signal decomposition method, it can 
quickly decompose the annual time series into high-frequency and low- 
frequency signals, and directly estimate the actual response of respira-
tion to temperature based on the high-frequency signals. In addition, the 
long-term method uses year-round data to estimate the apparent Q10, 
which does contain the confounding effect. In the future, the high- 
frequency signals decomposed by the SSA method could be easily used 
to estimate the actual response of respiration to temperature. 

4.2. Reasons for the wide variation of apparent Q10 

To further explore the reasons for the wide variations of apparent 
Q10, we estimated Q10_short by increasing the window length of the short- 
term method for the Arou site (Fig. 6). Reichstein et al. (2005) indicated 
that the 15-day window length is short enough to avoid the effects of 
other factors and long enough to provide adequate data for the regres-
sion. Similarly, we found that the Q10_short value is stable when the 
window length is around 10–15. Interestingly, Q10_short increases and 
becomes gradually closer to Q10_long as the window length continues to 
increase. Therefore, increasing the window length does lead to the entry 
of other confounding effects caused by the non-temperature factors. 

We also explored the relationships between Q10_long and other factors 

Fig. 5. The relationships between the apparent Q10_long and Q10_short (or Q10_hf) after removing the confounding effects caused by the non-temperature factors (a) and 
the confounding effect for Q10 (b). GRA, FOR, WET, CRO, and DES represent the grassland, forest, wetland, cropland, and desert ecosystems, respectively. Different 
points for each biome indicate different site-years. 

Fig. 6. The influence of window length on the temperature sensitivity esti-
mated by the short-term method (Q10_short). The blue arrows represent the 15- 
day window used in this study. The red line is Q10 estimated from the long- 
term method (Q10_long), and the light-shaded section around the line indicates 
the standard deviation for the different years. 
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(Fig. 7). In this study, we found that precipitation (P) and soil moisture 
(SM) show a strong positive correlation with Q10_long, which suggests 
that an adequate water supply can promote the temperature response of 
carbon substrate decomposition (Davidson et al., 2006). In addition, 
GPP, SOC, and air temperature (Ta) are also important factors affecting 
Q10_long (Fig. 7). Among these factors, the first two are a prerequisite for 
an adequate supply of carbon substrates. In the Heihe River Basin, the 
sites with higher P and SM values are mainly concentrated in the upper 
reaches, where grassland is common (Fig. S3). There is higher SOC and 
photosynthetic capacity of vegetation, which provide complex con-
founding effects to affect the apparent Q10 (Figs. S3 and 6b). In addition, 
our findings confirm the previous results, in that Q10 decreases with 
increasing temperature. The explanation for this negative correlation is 
that, as temperature increases, there is a declining relative increase in 
the fraction of organic matter molecules with enough energy to react in 
chemical reactions (Kirschbaum, 2006; Ågren and Wetterstedt, 2007; 
Hamdi et al., 2013; Gritsch et al., 2015). Overall, Q10_long reflects not 
only the response of Re to temperature changes, but also the con-
founding effects of other factors, such as vegetation growth (e.g., roots 
and leaves), substrate supply, and other environmental changes (e.g., 
SM) (Gaumont-Guay et al., 2009; Gritsch et al., 2015; Chang et al., 2016; 
Yan et al., 2019). 

4.3. The Q10 values in Earth system models 

Differences in the estimated Q10 values can lead to great un-
certainties in predicting the intensity of climate‑carbon cycle feedback 
in ESMs. Previous studies usually obscured the Q10 obtained from 
different methods, especially long-term method even didn’t account for 
the confounding effect (Mahecha et al., 2010; Wu et al., 2021a). In 

addition, the temperature increase experiment is also used to explore the 
independent response of carbon dynamics to global warming (Chen 
et al., 2022; Wang et al., 2021). However, it is still difficult to fully 
conform to the real situation in the field since there are many influ-
encing factors with covariation effects (Zhang et al., 2022). In this study, 
the Q10 values estimated by the short-term method and high-frequency 
signals decomposed by the SSA method provide us with the possibility of 
exploring a true response of Re to Ta under long-term observations rather 
than control experiments (Reichstein et al., 2005; Wu et al., 2021a). The 
high-frequency signals of the SSA method and short-term method have 
consistent roles in removing the confounding effect, and they are 
applicable to all biomes. Thus, we can quickly obtain reliable Q10 values 
based on the high-frequency signals of the SSA method and short-term 
method. 

Although some studies have given the Q10 values obtained using 
different methods, the Q10 values are not distinguished explicitly in 
ESMs (Smith and Dukes, 2013; Shao et al., 2013; Foereid et al., 2014; 
Badawy et al., 2016; Todd-Brown et al., 2018; Wu et al., 2021b). Pre-
vious studies have shown that the Q10 values in the ESMs in the Coupled 
Model Intercomparison Project 5 (CMIP5) range from 1.4 to 2.2 (Todd- 
Brown et al., 2018; Hashimoto et al., 2015). We further investigated the 
differences of Q10 in some specific models (Table 1). Most models 
typically set Q10 as a constant value of 2, e.g., the Terrestrial Ecosystem 
Model (TEM) and the Carnegie-Ames-Stanford Approach (CASA) model 
(Tjoelker et al., 2001; Liu et al., 2016). Only very few models employ a 
fixed value of 1.5 as Q10 (e.g., in the Community Land Model, CLM) 
(Oleson et al., 2013; Foereid et al., 2014; Meyer et al., 2018), which is 
close to the global results (1.4 ± 0.1) reported by Mahecha et al. (2010), 
and also our results. As a result, the response of carbon emissions to 
climate warming can be overestimated, and there is therefore an urgent 

Fig. 7. The relationships between Q10_long and its main influencing factors in the Heihe River Basin. The 15 different points are from the multi-year mean values for 
each site. The horizontal bars indicate the standard deviation of different years of Q10_long, and the vertical bars indicate the standard deviation of different years of 
main influencing factors. 
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need to adjust the appropriate setting of Q10 in most ESMs (Wang et al., 
2010b). 

5. Conclusions 

In this study, we scrutinized the underpinnings of three mainstream 
methods (long-term, short-term, and SSA methods) to reveal their re-
lationships in estimating Q10 for Re in the Heihe River Basin, northwest 
China. We found that the high-frequency signal of the SSA method and 
the time series treated by the short-term method show similar variation 
characteristics. This results in consistent ecological meanings for Q10_hf 
and Q10_short. Q10_hf and Q10_short show convergence (1.4 ± 0.2 and 1.3 ±
0.1, respectively) and reflect the actual response of respiration to tem-
perature after removing the confounding effects caused by the non- 
temperature factors. In addition, the low-frequency signal of the SSA 
method can better reflect the seasonal variation of the original time 
series, and its estimated Q10 value contains the confounding effects 
caused by the non-temperature factors. Therefore, the Q10 values esti-
mated by the low-frequency signal of the SSA or long-term method show 
large differences across different biomes (1.7 ± 0.3). Overall, the short- 
term and SSA methods can obtain closer and convergent values after 
removing the confounding effects. Therefore, it is recommended to use 
Q10 obtained by the latter two methods to predict the terrestrial carbon 
dynamics and its response to global warming in ESMs. 

CRediT authorship contribution statement 

Yang Zhang: Conceptualization, Writing–Original draft. Gaofeng 
Zhu: Writing–Reviewing and Editing, Funding acquisition. Kun Zhang: 
Writing–Reviewing and Editing. Heng Huang: Writing–Reviewing and 
Editing. Liyang He: Formal analysis. Cong Xu: Methodology. Huiling 
Chen: Formal analysis. Yonghong Su: Visualization, Funding acquisi-
tion. Yuzhong Zhang: Formal analysis. Haochen Fan: Formal analysis. 
Boyuan Wang: Formal analysis. 

Declaration of competing interest 

The authors declare that they have no competing financial interests 
or personal relationships that could have appeared to influence the work 
reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

This research was funded by the Key Project of Natural Science 
Foundation of Gansu province (grant no. 23JRRA1025) and the National 
Natural Science Foundation of China (grant nos. 42171019 and 
42071138). The field measurement data were provided by the National 
Tibetan Plateau Data Center (http://data.tpdc.ac.cn), which we would 
very much like to thank. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.scitotenv.2024.171403. 

References 

Aber, J.D., Federer, C.A., 1992. A generalized, lumped-parameter model of 
photosynthesis, evapotranspiration and net primary production in temperate and 
boreal forest ecosystems. Oecologia 92 (4), 463–474. https://doi.org/10.1007/ 
BF00317837. 

Ågren, G.I., Wetterstedt, J.Å.M., 2007. What determines the temperature response of soil 
organic matter decomposition? Soil Biol. Biochem. https://doi.org/10.1016/j. 
soilbio.2007.02.007. 

Alexandrov, G.A., 2014. Explaining the seasonal cycle of the globally averaged CO2 with 
a carbon-cycle model. Earth Syst. Dynam. 5 (2), 345–354. https://doi.org/10.5194/ 
esd-5-345-2014. 

Badawy, B., Arora, V.K., Melton, J.R., Nassar, R., 2016. Journal of advances in modeling 
earth systems. Journal of Advances in Modeling Earth Systems. 8, 614–633. https:// 
doi.org/10.1002/2015MS000540. 
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